PHYSICAL REVIEW E 70, 056613(2004)

Single- and double-vortex vector solitons in self-focusing nonlinear media
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We study two-component spatial optical solitons carrying an angular momentum and propagating in a
self-focusing saturable nonlinear medium. When one of the components is small, such vector solitons can be
viewed as a self-trapped vortex beam that guides either the fundamental or first-order guided mode, and they
are classified as single- and double-vortex vector solitons. For such composite vortex beams, we demonstrate
that a large-amplitude guided mode can stabilize the ringlike vortex beam which usually decays due to
azimuthal modulational instability. We identify different types of these vector vortex solitons and demonstrate
both vortex bistability and mutual stabilization effect.
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I. INTRODUCTION saturable nonlinear medium. We study two types of such

Vortices are fundamental localized objects which appeaPVo-component composite vortex solitons, isingle-vortex
in many branches of physi¢4]. In fluid mechanics, coher- Vector s_olltonsthat can be considered as the vortex-induced
ent structures in the form of vorticity filaments are centralwaveguide that guides a fundamental mode, aodble-
dynamical objects to understand most fluid flows and parvortex vector solitonswhen the localized field is similar to
ticularly fluid turbulence. More recently, the study of vortices the first-order guided mode, being a vortex beam by itself.
in Bose-Einstein condensates revealed many intriguing prog=or some of the cases, we demonstrate that a mutual inco-
erties of superfluids created by ultracold atgi?is Different  herent coupling between the vortex waveguide and a large-
types of vortices can also be found and identified in opticsamplitude guided mode it guides can provide a strong stabi-
one of the simplest objects of this kindasphase singularity  lizing mechanism for stable or quasistable two-component
in an optical wave front which is associated with a phasevortex solitons to exist in such media, in agreement with the
dislocation carried by a diffracting optical bed@4]. recent observatiofil3] of the stabilizing mechanism of the

In self-focusing saturable nonlinear media, optical vorti-mutual coupling between different components of the com-
ces can exist as self-trapped ringlike optical beams with zergosite vortex beam.
intensity at the center carrying a phase singuldiiy How-
ever, due to the self-focusing nature of nonlinearity such
ringlike vortex beams become unstable to azimuthal pertur- IIl. MODEL

bations, and they decay into several fundamental optical soli- |, orer to study the vector vortex solitons, we consider
tons flying off the main ring6]. This effect was observed o iteraction of two mutually incoherent optical beams

g;{)uergg]lgnlt<ae”r¥-Ilirlled:i)er:ﬁ:;ar:or?qlézr:ﬁ:r t;ri]aesdelg, Iﬂgltlz)?ler;?aégs ropagating in a self-focusing nonlinear saturable medium.
' P he evolution equations for two incoherently interacting

crystals, gnd quadratic nonlinear crystals ope_rating in th%eams can be presented in the following dimensionless form:
self-focusing regimésee details and references in Réf}). :

There are known several ways to stabilize this azimuthal au (Jul2+ plv[>u
modulational instability, including the vortex stabilization in I—+A U+ ————=
the presence of a large-amplitude beam guided p¥]jtand oz L+o(|u*+ [l
the stabilizating effect of partial incoherence of light on the
vortex [9]. _ L (o + pluPo
When a self-trapped vortex beam guides a large- oz LU +o(uZ+ )~
amplitude fundamental beam, it creates together with the
guided beam a composite object in the form aofvector ~whereu andv are the dimensionless amplitudes of the fields,
soliton [7]. Mutual coupling between the fundamental beamthe parameteor characterizes the nonlinearity saturation ef-
and the vortex-carrying beam can create different novel typefect, and the mutually incoherent interaction between the
of composite vector solitons carrying an angular momentuninodes is described by the coupling paramegtethe spatial
[10-12. The properties of such vector vortex solitons cancoordinatez is the beam propagation direction, amd,
differ substantially from the properties of one-componentstands for the transversal part of the Laplace operator in the
scalar vortices and scalar solitons. In particular, the mutuaylindrical coordinates, defined through the radies; (x?
coupling between the beams can modify dramatically thery?)'2, and angularg=tarr’(y/x), coordinates. Mode{1)
vortex properties and, in particular, can suppress the deveprovides a straightforward generalization to a number of im-
opment of azimuthal instability8]. portant cases studied earlier. In particular, the limit-0
In this paper, we analyze the existence, general propertiesprresponds to the Kerr medium with cubic nonlinearitg]
and stability of the vector vortex solitons in a self-focusingwhere all self-trapped beams may undergo collapse instabil-
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ity. The case of the saturable nonlinearity at1 corre- 6 A o c
sponds to the incoherent beam interaction in photorefractivem (A) 15 ©
nonlinear medig10,11,14. We look for stationary solutions T 41 44 \V
of the system(1) that describe a radially symmetric single- %_ u ] N\
charged vortex beam in the field £ 2] 5 ] \
A [V J N
u(r, ¢;2) = u(r)e%e?, (2) H _-\Y\\ ] Y
0 f———pF—— 0 K
where the amplitude(r) vanishes for — . We assume that 0 5'—, 10 .0 é 10
. ) 6 6
the vortex(2) guides(or is coupled tp the second beam, B -1) I (B -1
o(r,$;2) = v(r)e' P, 3 8] s\,
where B is a dimensionless ratio of the propagation con- %_ N
stants. In Eqs(2) and(3) the functionsu(r) andu(r) are the g 2777, J 2 1 u N
radial envelopes of the interacting fields, dnd=0, = 1) is VIR ] N
an integer number related to the angular momentum that de 0 +¥—————=F=r—— 0 f——pr————s
scribes the number of phase windings of the guided mode 4 0 5 10 50 5 10
Equations for the stationary envelopes are given by (D-1) ] (D -1
@
1 U + puo?)u S 4 41
—u+A,u——2u+(—'L;)2= : 2 L.V
r 1+o(u“+v9) o s,
E 2 u 24 /7N
-V ] .
2 (0% + pu)v VAN /U N
— +Ayp—-—p+ —m— = 4 DTN ] S
po rUrzvl+a(u2+z)2)0' @ 01—t O
0 5 10 0 5 10
whereA, is the radial part of the Laplace operator, r r
1d/ d FIG. 1. Examples of single-vortex vector solitons created by the
A= Fa ra . vortex beamu and the fundamental modeit guides. Labels cor-

respond to the points marked in Fig. 2. For points B and D, we
The radially symmetric, spatially localized solutions of the show two different solutions named with roman numbers | and I,
system(4) describe different types of two-component com- that exist due to bistability. The model parameters are{zA
posite solitons carrying an angular momentum, and they canl-10,8=1.38, B (1=1.10,8=1.44, C (x=1.17,8=1.38, and D
form either single- or double-vortex vector solitons. In a(#=1.17,8=1.47.

two-dimensional geometry, such solutions can only be found o ) ) i
numerically. existence domain is restricted by the solid curves which de-

scribe some specific cutoff boundaries. Close to the lower
cutoff, one of the components becomes small: the fundamen-
lll. SINGLE-VORTEX VECTOR SOLITONS tal field in the left regionsee the cases A and D-kand the
We consider the self-trapped vortex beam created in th¥ortex in the right regioricases B-ll and € The other com-
main field u, with the asymptotic behavioa(r)—0 asr
— oo, Besides that, we require that the incoherently interact-
ing componentv(r) describes a localized mode, i.e.(r)

—0 and thereforgg>0. At the origin(r=0), the boundary
condition for the vortex isu=0 and, if we seek the single- § 15
vortex solution with the fundamental guided mqdle0), the [ZI.
corresponding boundary condition fofr) is dv/dr=0 (or 8
U=0g). & 1

t

We find localized solutions numerically, by means of the '
relaxation technique. In Fig. 1, we show some examples of§

ga

i =% D
two-component localized solutions which describe a funda-g 0.5 "
mental(no nodeg beam, guided by the self-trapped vortex ] B &
that create togethex single-vortex vector solitorThe exis- ] ¥ 12
tence domain for such solutions has been calculated numeri 0 S A b L S

cally for a special case=0.5, and it is shown in Fig. 2 on
the parameter plan@3, ). The existence region for single-

vortex vector solitons is composed of two regions which F|G. 2. Existence domain of the single-vortex vector solitons on
overlap in a triangular-shaped domain shaded with a differthe parameter plangs, w) at 0=0.5. The inset shows an enlarged

ent intensity in Fig. 1. In this intersection, two types of vor- region of bistability where two different types of vortex-mode so-
tex solutions mark the familiar bistability phenomenon. Thelutions coexist.

1
Coupling parameter, u
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FIG_. 3. Bifurcation diagram _for the two_—gomponent vector vor- g5 4 Examples of the vortex propagation dynamics in the
tex soll|tons, shown toglg!ether W'Eh the fi_m”'es of the scalar fuEda'bistability domain. Shown are the field intensity profiles as gray-
mental and vortex solitons gi=1.1. Thin curves represent the scale images at several propagation distances. Top: the components

phowerslru andPp, of e]fiCh of the §calar so||tor1l§; the th_'Ck C”r\(’je IS of the B-I vector soliton. Bottom: the components of the B-Il vector
the total powerP, of a composite vortex soliton. Points; @n soliton (see Figs. 1 and)3

O, are the bifurcation points where the vector soliton emerges, and

the intersection points B-l and B-Il correspond to the example of . . .
bistable single-vortex solutions for point(@=1.44 shown in Fig.  then it merges with the other partial power cudg at the
1. bifurcation point Q (see Fig. 3. The bistable solutions B-I

and B-Il, which are presented in Fig. 1 being related to point

ponent is therefore only weakly distorted. However, whenB In Fig. 23 cor:rezpong'l'go a:jsmglg value of thle propag?tlon
the propagation constaptis close to the upper cutoftases constants in the bistability domain. Importantly, two solu-

tions have different stability properties, and only one of them

B-1 and D-Il), the amplitudes of both components becomeis stable, as shown in Fig. 4. In general, the solutions belong-

Comparable’. affecting strongly ea_ch other. F_or s_ma_ll \./alue?ng to the left region in the domain are unstable and those
of the coupling parametet, the existence region is limited

. belonging to the right zone are stable.
from above by the constant value d /(in our example, : ? ;
_ : . X . The incoherent interaction between the vortex beam and
1/0=2), the value which can be easily explained by a simple

L . . : the localized mode it guides has the character of attraction,
qualitative analysis. Indeed, according to E@H, the exis- . ; . . .
: and it may provide an effective physical mechanism for sta-
tence of bounded stationary states for botandv compo-

: . o . bilizing the vortex beam in a self-focusing nonlinear me-
nents requires the following conditions to be valid: . )
dium. Indeed, a scalar vortex beam becomes unstable in a

u?+ po? self-focusing nonlinear medium due to the azimuthal modu-
m 1, (5 lational instability. In this case, the vortex splits into the fun-
damental beams that fly off the main vortex ring. On the
2 2 other hand, the bright solitons are known to be stable in such
iz

1+o(u?+0?

(6) media. We expect that a mutual attraction of the components
in a two-component beam may lead to a counterbalance of
the vortex instability by the bright component when its am-
plitude is large enough. To confirm this idea, we consider a
two-component composite structure consisting of a vortex
v2 beam together with the fundamental mode it guides, both
B <ma 1+o(P+0?) | (7)) described by Eqg1) at #=1.0. To study the mode stability,
we propagate the stationary soliton solutions numerically. In
The right-hand-side term vanishes when the amplitude of th€&ig. 5, we compare the vortex breakup for the scalar and
componentv vanishes at the cutoff, but it approaches thevector systems. In the top row, we show the propagation of a
value 1/o0 when the amplitude of the field becomes large. vortex alone in the scalar model; the vortex breaks up into
This analysis is valid for any type of the guided mode. two solitons which fly away after some distance. In the bot-
In order to describe the bistable vector solitons, in Fig. 3tom row, we show the propagation of two coupled compo-
we display the bifurcation diagram of the two-componentnents(the vortex and bright mode it guide®ue to a strong
vortex-mode localized solutions, for the partial and totalincoherent coupling between the modes, the propagation of
beam powers. Composite vortex-mode solitons presented liie vortex is stabilized for some propagation distances, so
the power dependend®,,, originate at the bifurcation point that the vortex breakup is delayed dramatically, as shown in
O; where the mode is small and can be described by the Fig. 5 (lower row), or even become completely stable, simi-
linear theory. For larger value g8, this curve bends, and lar to the case shown in Fig. dow row). We confirm this

1+o(U?+0?)

Consideringu— 0, we obtain from Eq(6) that the existence
of localized solution requires that
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FIG. 5. Vortex stabilization due to mutual interaction. Shown 0

propagation constant,

- —_—
are the field intensity profiles as gray-scale images at several propz 0 0.5 1 15

gation distances. Top: breakup of a scalar vortex solit@n0). coupling parameter, n

Bottom: both the vortex beam and the fundamental guided mode
(approximated by a Gaussian begmnopagate together. Parameters
are:o=0.5,u=1, andpB=1.45.

FIG. 7. Existence domain for different types of double-vortex
solitons. Domain 1: only the solutions of type I; domain 2: only
solution of type Il; domain 3: solutions of types I, I, and lll; do-

tabilizati hani b f . tudy f main 4: solutions of types |, I, and IV; domain 5: all four types of
stabilization mechanism Dy periorming our study 1or ay, iqng exist. Two vertical thin dotted lines indicate the values of

Gaussian.input beam of the bright com.ponent_ ir_ISte_ad of thﬁ for which the bifurcation diagrams are presented in Figs. 9 and
exact stationary state, as would be easier realizing in experi

ment.

Ain Fig. 6. The first typetype |) is described by two rings
where the ring in the field is larger than the ring in the flied
v; the opposite situation occurs for the solutions of type I
To study types of vector vortex solitons, we consider theisee Fig. 6. Other two types of solutions have one of the
vortex beam in the fieldi coupled to the first-order guided fields of a two-humped shape: either the fialgtype 1Il) or
mode described by the solutiaB) with 1=1. Thus for the the fieldy (type 1V). As the coupling parameter grows, the
field v we look for a vortexlike localized solution with the valley in the two-humped solutions becomes shallower, and
boundary conditiow(r) — 0 atr=0. Our analysis shows that it disappears when the solution crosses a thin dashed line on
there exist four different kinds of such solutions, and theythe existence plan@ig. 7), moving either to the domains 3
form the families of the so-calledouble-vortex vector soli- or 4. In the upper domai3> 1, domain 3, no solution of
tons We show some examples of these solutions in Fig. Gype IV can be found further up from this line, being conse-
and Fig. 8, whereas the existence domains for all solutions afuently the boundary of its existence domain. Besides, the
this type are shown on the parameter plafeuw) in Fig. 7. solution of type Ill degenerates in a single-humped solution
In the region labeled with number 5, there exist four typesand still exists up to the thin continuous liteee Fig. 8, case
of localized double-vortex solutions, as shown for the pointB-IIl). The opposite occurs in the lower domgj< 1, do-

IV. DOUBLE-VORTEX VECTOR SOLITONS

10 10
] | ] Il
)]
© 1 Vo T
-] 41 7 .
= 54, WV 5 ~
(o} ] II \\ 1 u /7 AN
e ) \\ _ // \
3 _I/ u | vV
4 \\ i /,’ \\
R N S FIG. 6. Examples of four types of double-
0 5 10 15 0 5 10 15 - 6 p yp
vortex vector solitons calculated far=0.5, u
10 ] I 10 ] v =0.3, and 8=1.5. All solutions correspond to
] i - oint A in Fig. 7.
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e e e B L FIG. 8. Tristable solution found fop=0.5
102 5 10 15 520 5 10 15 and 8=1.5 (point B in Fig. 7 and the unique
1 (B -1 . €) solution found foru=0.7 andB=1.5(point ). In
@ 1 7 all caseso=0.5.
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main 4), where the solitons of type Il cannot be found to the larger maximum, the former condition cannot be satisfied
right of the dashed line, and the solitons of type IV degen-unless the value af is small at the position of the maximum
erate into single-humped modes. of u, so that there still exists an effective potential with a
Single-humped solutions of types | and 1l both exist up torelative maximum higher than 1. That requires that both
the continuous thin line, though the maxima of both fieldsfields have maxima shifted enough to each other, explaining
u(r) andu(r) are shifted, approaching each other as the pathe shape of the solutions in region 5 of Fig. 7. Wheiis
rametery increasegsee the examples B-1 and B-Il in Fig. !arger, however, this condition can be satisfied when the
8). Further up from this line, in the upper domajg>1, Maxima of both solutions almost coincide. Because the field
domain 9 the solutions Il no longer exist, while the solutions U P€comes self-guided and the shifting is not possiile to
| have a symmetric shape where the maxima of the field$1® coupling between both componenesach field has to be
approximately coincidéFig. 8, case ¢ Dashed thick curve localized in the region close to the other. This explains the

corresponds to the cutoff for such solutions, towards whiciP&havior of the solutions whep grows and the solution
the amplitude of the mode becomes small and does not CroSses the boundaries between region 5 and region 3, and

influence the vortex mode in the field On the other hand, then moves to region 1. On the other hanqg it decreased,
the continuous thick line is the upper cutoff where a vectoth® component(r) becomes smaller being guided by the
soliton originates. componentu(r). This explains the behavior of the solutions
Shape of these solutions can be explained qualitatively by 20000
a simple analysis. In fact, from E@5), assumingu small 1
and the maximum amplitude ofr) much larger than that of |
u(r) (i.e., the parametep close to the upper cutoff we 15000 -
obtain the condition mdx?/(1+ov?)]>1. Sincev has a 1

3000

2000+

power

1000 F=== =TT — —
1 05 1 15 2
propagation constant, B

00_5' [ P A W U FIG. 10. Bifurcation diagram for vector and scalar vortex soli-
propagation constant, B tons(at ©=0.53. P, and P, (dashed thin lingsare the powers of
the scalar vortices created in each component separately. Other
FIG. 9. Bifurcation diagram for vector and scalar vortex solitonscurves are labeled with a subscript corresponding to different types
(at ©=0.7). P, andP, (thin linegy are the powers of scalar vortices of vector solitons: type {continuous thin ling type Il (continuous
created in each component separately, wRilg, (thick line) is the  thick line), and type Il (dashed thick ling Points Q and G are
power of the vector soliton originated at the bifurcation poings O bifurcation points, and § O,, and G are critical points. An area
and O. near the bifurcation point ©is shown in the inset.
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z=0

z=0 z=50

z=125 z=190 z=250

z=125 z=190 z=250 z=20 z=40 z=50

Z=63 2=0 2=75 2=80 285

FIG. 12. Decay of the vortex vector solitons into 2 ¢tdp row)
and 2+ 2(bottom row fundamental solitons. The upper case corre-
sponds to the solution of type Ipoint F; ©=0.2,8=1.41), and the
lower case to the solution of type(point C; ©=0.7, 8=1.5).

z=30 2=40 tions when a boundary between different existence domains

is crossed.
In Fig. 11, we show two examples of stable propagation.
The top rows present the evolution of the vector soliton cor-

z=0
responding to point D in Fig. 7. For comparison, we show

z=0 z=20
unstable propagation of the first component alone, when the

FIG. 11. Evolution of two types of stable double-vortex vector second vortex component is removed from the input. In the
solitons corresponding to point Dype I, top rowg and point E  |atter case, the vortex decays after propagating for some dis-
(type I, bottom rows For each soliton, both components are shownignce while the two component soliton remains virtually
for different values of_the propagation dis_tance. For comparison, Weianie for much longer propagation distance owing to the
;how the correspo_ndmg unstable evolution when the companent coupling between both the components. In general, it is pos-
Is removed at the input. sible to achieve a double-vortex vector soliton which re-

mains stable for an arbitrary distance provided we chose a
crossing the boundaries from region 5 into region 4 and tastate close enough to the upper cutoff, where one of the
region 2. components has larger amplitude and the interaction between

Existence of different kinds of double-vortex vector soli- both components is strong. In the bottom rows, we show
tons leads to multistability phenomena as well as more comanother example of the stable propagation corresponding to
plicated bifurcation diagrams. In Figs. 9 and 10, we presenpoint E in Fig. 7.
two examples of the bifurcation diagrams for two different  Different types of the double-vortex vector solitons dem-
values of the coupling parameter. In the first caseuat onstrate a rich variety of the instability-induced scenarios of
=0.7, only one solution for each value of the propagationtheir evolution. In Fig. 12 we present two examples of the
constant exists. AB=1, both solutions of type (8>1, re-  vortex evolution with two characteristic scenarios of the vor-
gion 1 in Fig. 3 and type 1I(8<1, region 2 merge together. tex decay, producing either 2+4.g., point F or 2+2(e.g.,

In fact, for 8=1, it is deduced from Eqg4) that both solu- point C) fundamental solitons. Finally, in Fig. 13 we show
tions u(r) andv(r) become identical. two more complicated scenarios of the vortex instability to

For smaller values oft, however, the existence of differ- illustrate a variety of the patterns that can be observed. In the
ent kinds of vortex solutions generate a variety of branchesop row, where the input state corresponds to point G, the
in the bifurcation diagram, as shown in Fig. 10. In this casesoliton decays in a complex way displaying a sequence of
there exist both the bifurcation points; @nd G and the symmetric patterns. In the bottom row, where the input state
critical points @Q, O,, and G, and three of the four kinds of corresponds to point H, the double-vortex soliton propagates
solutions exist for some values gf For other values of the in a quasistable way performing breathing radial oscillations.
coupling parameten, different types of the bifurcation dia- In all the cases discussed here, the topological charges of
grams are obtained, and they all show a change of the soliboth the components are chosen with the same &ig.
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z=100 z=120 z=155 gular momentum, the so-called vector vortex solitons. We

have considered two major types of such solitons that propa-
gate in self-focusing saturable nonlinear media and can be
classified in the low-intensity limit through the fundamental
and first-order localized modes guided by the main vortex
beam. We have calculated the existence domains of such
vortex composite solitons and studied numerically their sta-
bility to weak perturbations. In particular, we have revealed a
different mechanism for stabilizing the vortex azimuthal
il ot - - modulational _instability by a co-propagating guided _mode of
a large amplitude. We have demonstrated the existence of
bistable composite double-vortex solitons as well as studied
their instability-induced dynamics. We believe that similar
results can be obtained for composite vortices in other types
of nonlinear models describing the mutual coupling between
such as the physics of the multispecies Bose-Einstein con-
densates of ultracold atoms.
FIG. 13. Examples of the vortex instability scenarios. Top: de-
cay of type IV vortex solitons corresponding to point(&=0.49,
B=1.95. Bottom: quasistable propagation of the vortex with

several fields, and our results can be useful for other fields

breathing components for type Il vector solitoqmoint H; ©=0.5, ACKNOWLEDGMENTS

£=1.95.
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