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We study two-component spatial optical solitons carrying an angular momentum and propagating in a
self-focusing saturable nonlinear medium. When one of the components is small, such vector solitons can be
viewed as a self-trapped vortex beam that guides either the fundamental or first-order guided mode, and they
are classified as single- and double-vortex vector solitons. For such composite vortex beams, we demonstrate
that a large-amplitude guided mode can stabilize the ringlike vortex beam which usually decays due to
azimuthal modulational instability. We identify different types of these vector vortex solitons and demonstrate
both vortex bistability and mutual stabilization effect.
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I. INTRODUCTION

Vortices are fundamental localized objects which appear
in many branches of physics[1]. In fluid mechanics, coher-
ent structures in the form of vorticity filaments are central
dynamical objects to understand most fluid flows and par-
ticularly fluid turbulence. More recently, the study of vortices
in Bose-Einstein condensates revealed many intriguing prop-
erties of superfluids created by ultracold atoms[2]. Different
types of vortices can also be found and identified in optics;
one of the simplest objects of this kind isa phase singularity
in an optical wave front which is associated with a phase
dislocation carried by a diffracting optical beam[3,4].

In self-focusing saturable nonlinear media, optical vorti-
ces can exist as self-trapped ringlike optical beams with zero
intensity at the center carrying a phase singularity[5]. How-
ever, due to the self-focusing nature of nonlinearity such
ringlike vortex beams become unstable to azimuthal pertur-
bations, and they decay into several fundamental optical soli-
tons flying off the main ring[6]. This effect was observed
experimentally in different nonlinear media, including the
saturable Kerr-like nonlinear media, biased photorefractive
crystals, and quadratic nonlinear crystals operating in the
self-focusing regime(see details and references in Ref.[7]).
There are known several ways to stabilize this azimuthal
modulational instability, including the vortex stabilization in
the presence of a large-amplitude beam guided by it[8], and
the stabilizating effect of partial incoherence of light on the
vortex [9].

When a self-trapped vortex beam guides a large-
amplitude fundamental beam, it creates together with the
guided beam a composite object in the form ofa vector
soliton [7]. Mutual coupling between the fundamental beam
and the vortex-carrying beam can create different novel types
of composite vector solitons carrying an angular momentum
[10–12]. The properties of such vector vortex solitons can
differ substantially from the properties of one-component
scalar vortices and scalar solitons. In particular, the mutual
coupling between the beams can modify dramatically the
vortex properties and, in particular, can suppress the devel-
opment of azimuthal instability[8].

In this paper, we analyze the existence, general properties,
and stability of the vector vortex solitons in a self-focusing

saturable nonlinear medium. We study two types of such
two-component composite vortex solitons, i.e.,single-vortex
vector solitonsthat can be considered as the vortex-induced
waveguide that guides a fundamental mode, anddouble-
vortex vector solitons, when the localized field is similar to
the first-order guided mode, being a vortex beam by itself.
For some of the cases, we demonstrate that a mutual inco-
herent coupling between the vortex waveguide and a large-
amplitude guided mode it guides can provide a strong stabi-
lizing mechanism for stable or quasistable two-component
vortex solitons to exist in such media, in agreement with the
recent observation[13] of the stabilizing mechanism of the
mutual coupling between different components of the com-
posite vortex beam.

II. MODEL

In order to study the vector vortex solitons, we consider
the interaction of two mutually incoherent optical beams
propagating in a self-focusing nonlinear saturable medium.
The evolution equations for two incoherently interacting
beams can be presented in the following dimensionless form:

i
]u

]z
+ D'u +

suuu2 + muvu2du
1 + ssuuu2 + uvu2d

= 0,

i
]v
]z

+ D'v +
suvu2 + muuu2dv

1 + ssuuu2 + uvu2d
= 0, s1d

whereu andv are the dimensionless amplitudes of the fields,
the parameters characterizes the nonlinearity saturation ef-
fect, and the mutually incoherent interaction between the
modes is described by the coupling parameterm. The spatial
coordinatez is the beam propagation direction, andD'

stands for the transversal part of the Laplace operator in the
cylindrical coordinates, defined through the radial,r =sx2

+y2d1/2, and angular,f=tan−1sy/xd, coordinates. Model(1)
provides a straightforward generalization to a number of im-
portant cases studied earlier. In particular, the limits→0
corresponds to the Kerr medium with cubic nonlinearity[12]
where all self-trapped beams may undergo collapse instabil-
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ity. The case of the saturable nonlinearity atm=1 corre-
sponds to the incoherent beam interaction in photorefractive
nonlinear media[10,11,14]. We look for stationary solutions
of the system(1) that describe a radially symmetric single-
charged vortex beam in the fieldu,

usr,f;zd = usrdeifeiz, s2d

where the amplitudeusrd vanishes forr →`. We assume that
the vortex(2) guides(or is coupled to) the second beam,

vsr,f;zd = vsrdeilfeibz, s3d

where b is a dimensionless ratio of the propagation con-
stants. In Eqs.(2) and(3) the functionsusrd andvsrd are the
radial envelopes of the interacting fields, andl sl =0, ±1d is
an integer number related to the angular momentum that de-
scribes the number of phase windings of the guided mode.
Equations for the stationary envelopes are given by

− u + Dru −
1

r2u +
su2 + mv2du

1 + ssu2 + v2d
= 0,

− bv + Drv −
l2

r2v +
sv2 + mu2dv

1 + ssu2 + v2d
= 0, s4d

whereDr is the radial part of the Laplace operator,

Dr ;
1

r

d

dr
Sr

d

dr
D .

The radially symmetric, spatially localized solutions of the
system(4) describe different types of two-component com-
posite solitons carrying an angular momentum, and they can
form either single- or double-vortex vector solitons. In a
two-dimensional geometry, such solutions can only be found
numerically.

III. SINGLE-VORTEX VECTOR SOLITONS

We consider the self-trapped vortex beam created in the
main field u, with the asymptotic behaviorusrd→0 as r
→`. Besides that, we require that the incoherently interact-
ing componentvsrd describes a localized mode, i.e.,vsrd
→0 and thereforeb.0. At the origin sr =0d, the boundary
condition for the vortex isu=0 and, if we seek the single-
vortex solution with the fundamental guided modesl =0d, the
corresponding boundary condition forvsrd is dv /dr=0 (or
v=v0).

We find localized solutions numerically, by means of the
relaxation technique. In Fig. 1, we show some examples of
two-component localized solutions which describe a funda-
mental (no nodes) beam, guided by the self-trapped vortex
that create togethera single-vortex vector soliton. The exis-
tence domain for such solutions has been calculated numeri-
cally for a special cases=0.5, and it is shown in Fig. 2 on
the parameter planesb ,md. The existence region for single-
vortex vector solitons is composed of two regions which
overlap in a triangular-shaped domain shaded with a differ-
ent intensity in Fig. 1. In this intersection, two types of vor-
tex solutions mark the familiar bistability phenomenon. The

existence domain is restricted by the solid curves which de-
scribe some specific cutoff boundaries. Close to the lower
cutoff, one of the components becomes small: the fundamen-
tal field in the left region(see the cases A and D-I), and the
vortex in the right region(cases B-II and C). The other com-

FIG. 1. Examples of single-vortex vector solitons created by the
vortex beamu and the fundamental modev it guides. Labels cor-
respond to the points marked in Fig. 2. For points B and D, we
show two different solutions named with roman numbers I and II,
that exist due to bistability. The model parameters are: Asm
=1.10,b=1.38d, B sm=1.10,b=1.44d, C sm=1.17,b=1.38d, and D
sm=1.17,b=1.47d.

FIG. 2. Existence domain of the single-vortex vector solitons on
the parameter planesb , md at s=0.5. The inset shows an enlarged
region of bistability where two different types of vortex-mode so-
lutions coexist.
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ponent is therefore only weakly distorted. However, when
the propagation constantb is close to the upper cutoff(cases
B-I and D-II), the amplitudes of both components become
comparable, affecting strongly each other. For small values
of the coupling parameterm, the existence region is limited
from above by the constant value 1/s (in our example,
1/s=2), the value which can be easily explained by a simple
qualitative analysis. Indeed, according to Eqs.(4), the exis-
tence of bounded stationary states for bothu andv compo-
nents requires the following conditions to be valid:

maxH u2 + mv2

1 + ssu2 + v2dJ . 1, s5d

maxH v2 + mu2

1 + ssu2 + v2dJ . b. s6d

Consideringm→0, we obtain from Eq.(6) that the existence
of localized solution requires that

b , maxH v2

1 + ssu2 + v2dJ . s7d

The right-hand-side term vanishes when the amplitude of the
componentv vanishes at the cutoff, but it approaches the
value 1/s when the amplitude of the fieldv becomes large.
This analysis is valid for any type of the guided mode.

In order to describe the bistable vector solitons, in Fig. 3
we display the bifurcation diagram of the two-component
vortex-mode localized solutions, for the partial and total
beam powers. Composite vortex-mode solitons presented by
the power dependencePtotal originate at the bifurcation point
O1 where the modev is small and can be described by the
linear theory. For larger value ofb, this curve bends, and

then it merges with the other partial power curvePv at the
bifurcation point O2 (see Fig. 3). The bistable solutions B-I
and B-II, which are presented in Fig. 1 being related to point
B in Fig. 2, correspond to a single value of the propagation
constantb in the bistability domain. Importantly, two solu-
tions have different stability properties, and only one of them
is stable, as shown in Fig. 4. In general, the solutions belong-
ing to the left region in the domain are unstable and those
belonging to the right zone are stable.

The incoherent interaction between the vortex beam and
the localized mode it guides has the character of attraction,
and it may provide an effective physical mechanism for sta-
bilizing the vortex beam in a self-focusing nonlinear me-
dium. Indeed, a scalar vortex beam becomes unstable in a
self-focusing nonlinear medium due to the azimuthal modu-
lational instability. In this case, the vortex splits into the fun-
damental beams that fly off the main vortex ring. On the
other hand, the bright solitons are known to be stable in such
media. We expect that a mutual attraction of the components
in a two-component beam may lead to a counterbalance of
the vortex instability by the bright component when its am-
plitude is large enough. To confirm this idea, we consider a
two-component composite structure consisting of a vortex
beam together with the fundamental mode it guides, both
described by Eqs.(1) at m=1.0. To study the mode stability,
we propagate the stationary soliton solutions numerically. In
Fig. 5, we compare the vortex breakup for the scalar and
vector systems. In the top row, we show the propagation of a
vortex alone in the scalar model; the vortex breaks up into
two solitons which fly away after some distance. In the bot-
tom row, we show the propagation of two coupled compo-
nents(the vortex and bright mode it guides). Due to a strong
incoherent coupling between the modes, the propagation of
the vortex is stabilized for some propagation distances, so
that the vortex breakup is delayed dramatically, as shown in
Fig. 5 (lower row), or even become completely stable, simi-
lar to the case shown in Fig. 4(low row). We confirm this

FIG. 3. Bifurcation diagram for the two-component vector vor-
tex solitons, shown together with the families of the scalar funda-
mental and vortex solitons atm=1.1. Thin curves represent the
powersPu andPv of each of the scalar solitons; the thick curve is
the total powerPtotal of a composite vortex soliton. Points O1 and
O2 are the bifurcation points where the vector soliton emerges, and
the intersection points B-I and B-II correspond to the example of
bistable single-vortex solutions for point Bsb=1.44d shown in Fig.
1.

FIG. 4. Examples of the vortex propagation dynamics in the
bistability domain. Shown are the field intensity profiles as gray-
scale images at several propagation distances. Top: the components
of the B-I vector soliton. Bottom: the components of the B-II vector
soliton (see Figs. 1 and 3).
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stabilization mechanism by performing our study for a
Gaussian input beam of the bright component instead of the
exact stationary state, as would be easier realizing in experi-
ment.

IV. DOUBLE-VORTEX VECTOR SOLITONS

To study types of vector vortex solitons, we consider the
vortex beam in the fieldu coupled to the first-order guided
mode described by the solution(3) with l =1. Thus for the
field v we look for a vortexlike localized solution with the
boundary conditionvsrd→0 at r =0. Our analysis shows that
there exist four different kinds of such solutions, and they
form the families of the so-calleddouble-vortex vector soli-
tons. We show some examples of these solutions in Fig. 6
and Fig. 8, whereas the existence domains for all solutions of
this type are shown on the parameter planesb ,md in Fig. 7.

In the region labeled with number 5, there exist four types
of localized double-vortex solutions, as shown for the point

A in Fig. 6. The first type(type I) is described by two rings
where the ring in the fieldu is larger than the ring in the flied
v; the opposite situation occurs for the solutions of type II
(see Fig. 6). Other two types of solutions have one of the
fields of a two-humped shape: either the fieldu (type III) or
the fieldv (type IV). As the coupling parameterm grows, the
valley in the two-humped solutions becomes shallower, and
it disappears when the solution crosses a thin dashed line on
the existence plane(Fig. 7), moving either to the domains 3
or 4. In the upper domain(b.1, domain 3), no solution of
type IV can be found further up from this line, being conse-
quently the boundary of its existence domain. Besides, the
solution of type III degenerates in a single-humped solution
and still exists up to the thin continuous line(see Fig. 8, case
B-III ). The opposite occurs in the lower domain(b,1, do-

FIG. 5. Vortex stabilization due to mutual interaction. Shown
are the field intensity profiles as gray-scale images at several propa-
gation distances. Top: breakup of a scalar vortex solitonsv=0d.
Bottom: both the vortex beam and the fundamental guided mode
(approximated by a Gaussian beam) propagate together. Parameters
are:s=0.5, m=1, andb=1.45.

FIG. 6. Examples of four types of double-
vortex vector solitons calculated fors=0.5, m
=0.3, and b=1.5. All solutions correspond to
point A in Fig. 7.

FIG. 7. Existence domain for different types of double-vortex
solitons. Domain 1: only the solutions of type I; domain 2: only
solution of type II; domain 3: solutions of types I, II, and III; do-
main 4: solutions of types I, II, and IV; domain 5: all four types of
solutions exist. Two vertical thin dotted lines indicate the values of
m for which the bifurcation diagrams are presented in Figs. 9 and
10.
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main 4), where the solitons of type III cannot be found to the
right of the dashed line, and the solitons of type IV degen-
erate into single-humped modes.

Single-humped solutions of types I and II both exist up to
the continuous thin line, though the maxima of both fields
usrd andvsrd are shifted, approaching each other as the pa-
rameterm increases(see the examples B-I and B-II in Fig.
8). Further up from this line, in the upper domain(b.1,
domain 1) the solutions II no longer exist, while the solutions
I have a symmetric shape where the maxima of the fields
approximately coincide(Fig. 8, case C). Dashed thick curve
corresponds to the cutoff for such solutions, towards which
the amplitude of the modev becomes small and does not
influence the vortex mode in the fieldu. On the other hand,
the continuous thick line is the upper cutoff where a vector
soliton originates.

Shape of these solutions can be explained qualitatively by
a simple analysis. In fact, from Eq.(5), assumingm small
and the maximum amplitude ofvsrd much larger than that of
usrd (i.e., the parameterb close to the upper cutoff), we
obtain the condition maxfu2/ s1+sv2dg.1. Sincev has a

larger maximum, the former condition cannot be satisfied
unless the value ofv is small at the position of the maximum
of u, so that there still exists an effective potential with a
relative maximum higher than 1. That requires that both
fields have maxima shifted enough to each other, explaining
the shape of the solutions in region 5 of Fig. 7. Whenm is
larger, however, this condition can be satisfied when the
maxima of both solutions almost coincide. Because the field
v becomes self-guided and the shifting is not possible(due to
the coupling between both components), each field has to be
localized in the region close to the other. This explains the
behavior of the solutions whenm grows and the solution
crosses the boundaries between region 5 and region 3, and
then moves to region 1. On the other hand, ifb is decreased,
the componentvsrd becomes smaller being guided by the
componentusrd. This explains the behavior of the solutions

FIG. 9. Bifurcation diagram for vector and scalar vortex solitons
(at m=0.7). Pu andPv (thin lines) are the powers of scalar vortices
created in each component separately, whilePtotal (thick line) is the
power of the vector soliton originated at the bifurcation points O1

and O2.

FIG. 10. Bifurcation diagram for vector and scalar vortex soli-
tons (at m=0.53). Pu and Pv (dashed thin lines) are the powers of
the scalar vortices created in each component separately. Other
curves are labeled with a subscript corresponding to different types
of vector solitons: type I(continuous thin line), type II (continuous
thick line), and type III (dashed thick line). Points O1 and O2 are
bifurcation points, and O3, O4, and O5 are critical points. An area
near the bifurcation point O2 is shown in the inset.

FIG. 8. Tristable solution found form=0.5
and b=1.5 (point B in Fig. 7) and the unique
solution found form=0.7 andb=1.5(point C). In
all casess=0.5.
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crossing the boundaries from region 5 into region 4 and to
region 2.

Existence of different kinds of double-vortex vector soli-
tons leads to multistability phenomena as well as more com-
plicated bifurcation diagrams. In Figs. 9 and 10, we present
two examples of the bifurcation diagrams for two different
values of the coupling parameter. In the first case, atm
=0.7, only one solution for each value of the propagation
constant exists. Atb=1, both solutions of type I(b.1, re-
gion 1 in Fig. 7) and type II(b,1, region 2) merge together.
In fact, for b=1, it is deduced from Eqs.(4) that both solu-
tions usrd andvsrd become identical.

For smaller values ofm, however, the existence of differ-
ent kinds of vortex solutions generate a variety of branches
in the bifurcation diagram, as shown in Fig. 10. In this case,
there exist both the bifurcation points O1 and O2 and the
critical points O3, O4, and O5, and three of the four kinds of
solutions exist for some values ofb. For other values of the
coupling parameterm, different types of the bifurcation dia-
grams are obtained, and they all show a change of the solu-

tions when a boundary between different existence domains
is crossed.

In Fig. 11, we show two examples of stable propagation.
The top rows present the evolution of the vector soliton cor-
responding to point D in Fig. 7. For comparison, we show
unstable propagation of the first component alone, when the
second vortex component is removed from the input. In the
latter case, the vortex decays after propagating for some dis-
tance while the two component soliton remains virtually
stable for much longer propagation distance owing to the
coupling between both the components. In general, it is pos-
sible to achieve a double-vortex vector soliton which re-
mains stable for an arbitrary distance provided we chose a
state close enough to the upper cutoff, where one of the
components has larger amplitude and the interaction between
both components is strong. In the bottom rows, we show
another example of the stable propagation corresponding to
point E in Fig. 7.

Different types of the double-vortex vector solitons dem-
onstrate a rich variety of the instability-induced scenarios of
their evolution. In Fig. 12 we present two examples of the
vortex evolution with two characteristic scenarios of the vor-
tex decay, producing either 2+4(e.g., point F) or 2+2 (e.g.,
point C) fundamental solitons. Finally, in Fig. 13 we show
two more complicated scenarios of the vortex instability to
illustrate a variety of the patterns that can be observed. In the
top row, where the input state corresponds to point G, the
soliton decays in a complex way displaying a sequence of
symmetric patterns. In the bottom row, where the input state
corresponds to point H, the double-vortex soliton propagates
in a quasistable way performing breathing radial oscillations.
In all the cases discussed here, the topological charges of
both the components are chosen with the same signs+1d.

FIG. 11. Evolution of two types of stable double-vortex vector
solitons corresponding to point D(type II, top rows) and point E
(type I, bottom rows). For each soliton, both components are shown
for different values of the propagation distance. For comparison, we
show the corresponding unstable evolution when the componentv
is removed at the input.

FIG. 12. Decay of the vortex vector solitons into 2+4(top row)
and 2+2(bottom row) fundamental solitons. The upper case corre-
sponds to the solution of type IV(point F;m=0.2,b=1.41), and the
lower case to the solution of type I(point C; m=0.7, b=1.5).
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The case of the opposite charges has also been studied, and
the similar evolution scenarios have been observed.

V. CONCLUSIONS

We have analyzed the existence and basic properties of
the two-component composite optical beams carrying an an-

gular momentum, the so-called vector vortex solitons. We
have considered two major types of such solitons that propa-
gate in self-focusing saturable nonlinear media and can be
classified in the low-intensity limit through the fundamental
and first-order localized modes guided by the main vortex
beam. We have calculated the existence domains of such
vortex composite solitons and studied numerically their sta-
bility to weak perturbations. In particular, we have revealed a
different mechanism for stabilizing the vortex azimuthal
modulational instability by a co-propagating guided mode of
a large amplitude. We have demonstrated the existence of
bistable composite double-vortex solitons as well as studied
their instability-induced dynamics. We believe that similar
results can be obtained for composite vortices in other types
of nonlinear models describing the mutual coupling between
several fields, and our results can be useful for other fields
such as the physics of the multispecies Bose-Einstein con-
densates of ultracold atoms.
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